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Abstract. A geometrical setting for time-dependent impulsive constraints is given. This
description permits us to treat in a systematic way a wide family of mechanical systems subjected
to time-dependent constraints, like moving walls, etc. If the impulsive constraints remain then
an ‘affine projector’ can be defined giving the new initial data in terms of the old ones. Several
examples are discussed.

1. Introduction

In recent years non-holonomic mechanics has received a definitive boost and it
has been incorporated into the so-called geometrical or symplectic mechanics (see
[1, 6–8, 15, 17, 22–25, 27, 35–37] and references therein). However, mechanical systems
subjected to impulsive constraints have not received much attention although they are widely
discussed in classical books [4, 31] (see also [30, 32]). The dynamics of these systems cannot
be described by vector fields and a description in terms of implicit differential equations
is necessary. Recently [13], a geometric framework has been developed for these kind
of systems (in the autonomous case) by extending an implicit description of Lagrangian
dynamics due to Tulczyjew [39–41] (see also [5, 18, 28, 29]).

The aim of the present paper is to extend our formalism for mechanical systems subjected
to time-dependent impulsive constraints. They constitute an important family of mechanical
systems. For instance, the Fermi model [11] studies the acceleration of cosmic rays by
momentum transfer from magnetic fields, bouncing particles with a vibrating wall under
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the gravitational field of the Earth which is equivalent to the Fermi model, and its quantum
version [3, 38], billiards with moving boundary (see [16], and references therein), and many
others. It is remarkable that many of these systems exhibit chaotic behaviour. Other
examples are those called piecewise holonomic systems (see [33] and references therein);
an extension of our formalism in order to cover these cases would be desirable.

The first point to be remarked is that we need a jet manifold setting to develop the
Lagrangian formalism [9, 10, 12, 19]. Indeed,π : E −→ R is a fibred manifold and the
fibreπ−1(t) is the configuration manifold at timet [14]. The evolution space is then the 1-jet
manifold π1 : J 1π −→ R, and the Lagrangian function isL : J 1π −→ R. The equations
of motion are then derived by using a cosymplectic structure(�L, η) on J 1π where�L is a
2-form defined fromL by using the geometric structure ofJ 1π , andη = π∗1 (dt) (sections 2
and 3). In [20] two of the present authors have developed an implicit geometric setting for
time-dependent mechanics using a symplectic structure onT J 1π defined by the complete
lift of (�L, η) (section 3). The Hamiltonian formalism is developed by introducing an
adequate fibred manifoldπ∗1 : J 1π∗ −→ R (section 4). The above implicit description is
used in the present paper to include in the picture the bundle of Chetaev forces given by
the existence of impulsive constraints (section 5). The impulsive constraints are viewed
here as functions defining a submanifoldC̃ with boundary ofJ 1π , say it is locally defined
by 8A = 0, 9 > 0. The vector bundle of constraint forces has no constant rank, indeed
the fibres suffer a dimensional jump just at the moment when the impulsive constraints act.
In fact, the impulsive forces appear due to the discontinuity of the Lagrange multipliers
corresponding to9. In order to describe the motions we have to use two curves, one of
them giving an account of the jump of momenta (section 6). If some impulsive constraints
remain, we construct an affine projector which gives the new initial data in terms of the old
ones (section 7). The particular cases of holonomic one-sided and mixed constraints are
also considered, and a slight modification of the Chetaev bundle is needed (sections 8 and
9). Several examples are discussed in section 10. Finally, in the appendix we recall the
cosymplectic formalism which is used to derive the equations of motion for time-dependent
mechanical systems.

2. Evolution spaces, vertical endomorphism and second-order differential equations

In this section we will recall some definitions and results concerning the geometry of
evolution spaces (for more details see [19, 22, 34]). LetE be an(n+ 1)-dimensional fibred
manifold overR, i.e. there exists a surjective submersionπ : E −→ R.

We denote byJ 1π the 1-jet manifold of local sections ofπ . An element ofJ 1π will be
denoted byj1

t φ, wheret stands for the canonical coordinate onR andφ is a local section
of π .

If (t, qκ) are fibred coordinates onE, then J 1π has local coordinates(t, qκ, vκ). In
fact, if s −→ φ(s) = (s, φκ(s)) is a local section ofπ thenj1

t φ has coordinates(
t, φκ(t),

dφκ

ds
(t)

)
.

Therefore, ifE has dimension(n + 1), J 1π has dimension(2n + 1) and it is a fibred
manifold overE andR with canonical projectionsπ1,0 : J 1π −→ E andπ1 : J 1π −→ R,
respectively. In local coordinates, we have

π1,0(t, q
κ, vκ) = (t, qκ) π1(t, q

κ, vκ) = t π(t, qκ) = t.
Jet manifoldsJ 1π are evolution spaces for time-dependent mechanics.
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Remark 2.1. If E = R ×Q andπ is the trivial fibrationprR : E = R ×Q −→ R, we
have the canonical identificationJ 1prR = R× TQ, TQ being the tangent bundle ofQ.

We define a canonical embeddingι : J 1π −→ T E as follows:

ι(j1
t φ) = φ̇(t)

where φ̇(t) ∈ Tφ(t)E is the tangent vector att of the curves −→ φ(s). If we take local
coordinates(t, qκ, τ, vκ) for T E, we have

ι(t, qκ, vκ) = (t, qκ, 1, vκ).

There exists a canonical(1, 1)-tensor fieldJ̃ on J 1π [34] (see also [19, 22]) which is given
in local coordinates(t, qκ, vκ) by

J̃ = θκ ⊗ ∂

∂vκ

where θκ = dqκ − vκ dt are the family of local contact forms onJ 1π . J̃ is called the
vertical endomorphism ofJ 1π .

A vector fieldξ : J 1π −→ T J 1π on J 1π is said to be a non-autonomous second-order
differential equation (NSODE) if

J̃ (ξ) = 0 η(ξ) = 1

η being the 1-form onJ 1π defined globally byη = π∗1 (dt).
Therefore,ξ is a NSODE iff it has the following local expression

ξ = ∂

∂t
+ vκ ∂

∂qκ
+ ξκ ∂

∂vκ

whereξκ = ξκ(t, qχ , vχ ).
A local sectionφ of π : E −→ R is a solution of a NSODEξ if the 1-jet prolongation

j1φ of φ to J 1π is an integral curve ofξ .
Thus,φ(t) = (t, φκ(t)) is a solution ofξ iff it satisfies the following system of non-

autonomous differential equations of second order:

d2φκ

dt2
= ξκ

(
t, φχ ,

dφχ

dt

)
.

3. Lagrangian formalism in jet manifolds

In this section we will recall the geometric formulation of Lagrangian mechanics in jet
manifolds.

Let L : J 1π −→ R be a non-autonomous or time-dependent Lagrangian function.
Define the Poincaré–Cartan forms associated toL by

2L = Lη + J̃ ∗(dL) (Poincaŕe–Cartan 1-form)

�L = −d2L (Poincaŕe–Cartan 2-form).

Denote byp̃κ = ∂L/∂vκ the generalized momenta. Then we have

2L = (L− vκp̃κ) dt + p̃κ dqκ = L dt + p̃κθκ . (1)

We say thatL is regular if the Hessian matrix

(Wκχ) =
(

∂2L

∂vκ∂vχ

)
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is non-singular. So,L is regular iff(�L, η) is a cosymplectic structure onJ 1π . This means
that�L andη are closed and�nL ∧ η is a volume form (see the appendix and [10, 19, 26]).
In that case, there exists a unique vector fieldξL on J 1π such that

iξL�L = 0 iξLη = 1. (2)

Equivalently, if [L : T J 1π −→ T ∗J 1π is the vector bundle isomorphism defined by

[L(X) = iX�L + η(X)η (3)

we haveξL = [−1
L (η). So,ξL is the Reeb vector field of the cosymplectic structure(�L, η),

and it will be called the Euler–Lagrange vector field.
If (t, qκ, vκ; ṫ , q̇κ , v̇κ ) and (t, qκ, vκ; at , aκ, bκ) are the corresponding coordinates in

T J 1π andT ∗J 1π , respectively, then a direct computation, using (1) and (3), shows that

[L(t, q
κ, vκ; ṫ , q̇κ , v̇κ ) =

(
t, qκ , vκ; ṫ + q̇χ ∂2L

∂t∂vχ
− q̇χ ∂L

∂qχ
+ q̇χvκ ∂2L

∂qχ∂vκ

+vκ v̇χ ∂2L

∂vκ∂vχ
, ṫ
∂L

∂qκ
− ṫ ∂

2L

∂t∂vκ
− ṫvχ ∂2L

∂qκ∂vχ
+ q̇χ ∂2L

∂qκ∂vχ

−q̇χ ∂2L

∂qχ∂vκ
− v̇χ ∂2L

∂vκ∂vχ
, (q̇χ − ṫvχ ) ∂2L

∂vκ∂vχ

)
. (4)

This implies that

ξL = ∂

∂t
+ vκ ∂

∂qκ
+
(
−vµ ∂2L

∂qµ∂vκ
+ ∂L

∂qκ
− ∂2L

∂t∂vκ

)
Wκχ ∂

∂vχ

where(Wκχ) is the inverse matrix of the Hessian matrix(Wκχ).
Therefore, we have (see [19] and [22]) the following.

Theorem 3.1. (i) ξL is a NSODE.
(ii) The solutions ofξL are just the solutions of the Euler–Lagrange equations forL

d

dt

(
∂L

∂vκ

)
− ∂L

∂qκ
= 0. (5)

In what follows, we will give an implicit description of the equations of motion.
Let λJ 1π be the Liouville 1-form onT ∗J 1π and ωJ 1π = −dλJ 1π the canonical

symplectic 2-form. Consider onT J 1π the symplectic 2-formω given byω = −[∗L(ωJ 1π ).
Using the results of [20] on complete lifts of cosymplectic structures to tangent bundles,
we obtain that

ω = �c
L + ηc ∧ ηv

where�c
L is the complete lift toT J 1π of the 2-form�L andηc (respectively,ηv) is the

complete (respectively, vertical) lift of the 1-formη.
The symplectic structureω is called the complete lift toT J 1π of the cosymplectic

structure(�L, η) (see [20]).
Now, denote byDL

η the Lagrangian submanifold ofT J 1π defined by

DL
η = [−1

L (η(J
1π)).
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SinceDL
η = ξL(J 1π), we deduce that the local equations definingDL

η are just the Euler–
Lagrange equations forL. In fact, using (3), we have

DL
η =

{
(t, qκ, vκ; ṫ , q̇κ , v̇κ ) ∈ T J 1π | ṫ = 1, vκ = q̇κ , ṫ ∂

2L

∂t∂vκ
+ q̇χ ∂2L

∂qχ∂vκ

+v̇χ ∂2L

∂vχ∂vκ
− ∂L

∂qκ
= 0

}
that is, the local equations definingDL

η are

ṫ = 1 vκ = q̇κ d

dt

(
∂L

∂vκ

)
− ∂L

∂qκ
= 0.

The above situation is illustrated by the following commutative diagram:

T J 1π T ∗J 1π

J 1π� ξL
DL
η

6

-L R

@
@
@
@R

τJ 1π

�
�

�
�	

πJ 1π

�
�
�
��η

-[L

whereτJ 1π : T J 1π −→ J 1π andπJ 1π : T ∗J 1π −→ J 1π are the canonical projections.

4. The Hamiltonian formalism

Let L : J 1π → R be a regular time-dependent Lagrangian function. We define the map
Leg : J 1π → T ∗E by

Leg(j1
t φ)(X) = (2L)(j1

t φ)
(X̃)

for j1
t φ ∈ J 1π and X ∈ Tφ(t)E, where X̃ is a tangent vector atj1

t φ such that
(T π1,0)(X̃) = X. In local coordinates we obtain

Leg(t, qκ, vκ) = (t, qκ, L− vκp̃κ , p̃κ). (6)

Now, if x is a point ofE we consider the one-dimensional subspace(T ∗v E)x of T ∗x E given
by

(T ∗v E)x = {α ∈ T ∗x E | iuα = 0, for all u ∈ (V π)x}
whereVπ = {v ∈ T E | T π(v) = 0}. Then, the spaceT ∗v E =

⋃
x∈E(T

∗
v E)x is a vector

subbundle ofπE : T ∗E → E of rank one. We will denote byJ 1π∗ the quotient bundle
J 1π∗ = T ∗E/T ∗v E. The vector bundleJ 1π∗ overE has rankn and canonical projection
π∗1,0 : J 1π∗ → E. It fibres also overR with projectionπ∗1 = π ◦ π∗1,0 : J 1π∗ → R.

If (t, qκ, pt , pκ) are local coordinates onT ∗E then we have local coordinates(t, qκ, pt )
on T ∗v E and(t, qκ, pκ) on J 1π∗.

Let ν : T ∗E → J 1π∗ be the canonical projection. We denote by leg :J 1π → J 1π∗

the map leg= ν ◦ Leg. Using (6) and the fact thatL is regular, we deduce that Leg is
an inmersion and that leg is a local diffeomorphism. Assume, for the sake of simplicity,
that L is hyperregular, that is, leg :J 1π → J 1π∗ is a global diffeomorphism. In such a
case, we define a global sectionh : J 1π∗ → T ∗E of the projectionν : T ∗E → J 1π∗ by
h = Leg◦ leg−1. (If L is regular we only have local sections ofν.) This h will be called a
Hamiltonian section for a reason which will become clear later.
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If ωE is the canonical symplectic form onT ∗E, we consider onJ 1π∗ the 2-form�h
given by�h = h∗ωE . A direct computation proves that:

(i) leg∗�h = �L and leg∗η1 = η, where η1 is the 1-form onJ 1π∗ given by
η1 = (π∗1 )∗(dt);

(ii) the pair (�h, η1) is a cosymplectic structure onJ 1π∗;
(iii) if Xh is the Reeb vector field for(�h, η1), i.e. iXh�h = 0, iXhη1 = 1, thenξL and

Xh are leg-related;
(iv) suppose that in local coordinates

h(t, qκ, pκ) = (t, qκ,−H(t, qκ, pκ), pκ).
Then, the integral curves ofXh satisfy the Hamilton equations

dqκ

dt
= ∂H

∂pκ

dpκ
dt
= − ∂H

∂qκ
. (7)

As in the Lagrangian formalism, an alternative way to write down the Hamilton equations
is the following.

Let [h : T J 1π∗ −→ T ∗J 1π∗ be the vector bundle isomorphism given by

[h(X) = iX�h + η1(X)η1.

Consider onT J 1π∗ the symplectic structureωh defined by

ωh = −[∗h(ωJ 1π∗) = �c
h + ηc

1 ∧ ηv
1

that is, the symplectic structureωh is the complete lift toT J 1π∗ of the cosymplectic
structure(�h, η1) on J 1π∗.

Now, denote byDh
η1

the Lagrangian submanifold ofT J 1π∗ defined byDh
η1
=

[−1
h (η1(J

1π∗)). SinceDh
η1
= Xh(J 1π∗), we obtain that the local equations definingDh

η1
are

just the Hamilton equations (7).
Finally, using the fact that(T leg)(ξL) = Xh, we conclude that

(T leg)(DL
η ) = Dh

η1
.

The following commutative diagram illustrates the above situation:

� T leg �
?

T J 1π T ∗J 1π

J 1π� ξL
DL
η

6

-leg
J 1π∗

�
�
�
�
�
���

η1

?

τJ 1π∗

@
@@I
Xh

Dh
η1

�
���

T J 1π∗ -[h
T ∗J 1π∗

�
�

�
�

�
�	

πJ 1π∗

@
@
@
@@R

τJ 1π

�
�
�
��	

πJ 1π

�
�
�
���η

-[L

5. Non-holonomic one-sided constraints

We consider a modification of the Lagrangian formulation of section 3, to include the
Chetaev forces due to the presence of non-holonomic constraints.

Let L : J 1π −→ R be the regular time-dependent Lagrangian function of a
mechanical system which is subjected to non-holonomic one-sided constraints determined
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by a submanifold C̃ of J 1π with boundary, where the boundary∂C̃ is assumed to be
orientable.

A submanifoldN with boundary of a differentiable manifoldM is understood (see [13])
as a subsetN of M, locally defined by equations of the form8A(x) = 0, 9(x) > 0; so,N
is a manifold with boundary in the usual sense. Then, the interior ofN (denoted by IntN )
is a submanifold ofM and the boundary∂N of N is a submanifold ofM of codimension
one with respect toN .

We denote byT C̃ the tangent bundle of̃C, defined as follows. Ifx ∈ C̃, thenTxC̃
denotes the tangent vectorsX ∈ Tx(J 1π), such thatX(8A) = 0, for anyA. If x is an
interior point, thenTxC̃ is just the usual tangent space (IntC̃ is a submanifold ofJ 1π ). The
annihilator(T C̃)o of T C̃ is locally generated by{d8A}, i.e.

(T C̃)o = span{d8A}.
We consider a distribution contained iñJ ∗(T ∗(J 1π))|C̃ as follows:

(F1)x =
{

span{J̃ ∗(d8A)(x)} if x ∈ Int C̃

span{J̃ ∗(d8A)(x), J̃ ∗(d9)(x), f̄a(x)} if x ∈ ∂C̃
where f̄a, 1 6 a 6 U , are 1-forms which belong to the image ofJ̃ ∗, that is, the local
expression off̄a is of the form

f̄a = (f̄a)κθκ .
The setF1 is a vector bundle over̃C in an extended sense since not all the fibres have the
same dimension. It represents reaction forces of the constraints (also known as the Chetaev
bundle). Here, the 1-forms{f̄1, . . . , f̄U } correspond to instantaneous reaction forces at the
boundary due to some physical conditions (rough walls, etc).

We assume that there may be, in addition, external forces acting on the system. These
forces are introduced as another vector bundleF2 over C̃ which is a vector subbundle
of J̃ ∗(T ∗(J 1π))|C̃ . We also require thatF1 and F2 have a trivial intersection, that is,
F1 ∩ F2 = 0, and we consider the Whitney sumF1⊕ F2.

We assume that the following two conditions hold:

(i) admissibility

dim(T C̃)o = dim J̃ ∗(T C̃)o

(ii) compatibility

J̃ ∗(T C̃)o ∩ ((T C̃)o)⊥ = 0

where the orthogonal complement((T C̃)o)⊥ is defined with respect to the cosymplectic
structure(�L, η) on J 1π (see the appendix).

Remark 5.1. If there are no permanent constraints the compatibility condition is trivially
satisfied.

Next, we will give a local interpretation of the admissibility and compatibility conditions.
Since

(T C̃)o = span{d8A} J̃ ∗(T C̃)o = span{J̃ ∗(d8A)}
the equality dim(T C̃)o = dim J̃ ∗(T C̃)o means that the map

J̃ ∗ : (T C̃)o −→ J̃ ∗(T C̃)o
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is an isomorphism at each point of̃C. Hence, locally the{(∂8A/∂vκ)θκ} are linearly
independent. So, the admissibility condition is locally equivalent to the condition that the
reaction forces are independent.

Now, let [L : T J 1π −→ T ∗J 1π be the vector bundle isomorphism given by (3) and
#L = [−1

L the inverse homomorphism. We have (see proposition A.2)

((T C̃)o)⊥ = {α ∈ T ∗(J 1π) | 〈#L(α), (T C̃)o〉 = 0}.
Thusα ∈ ((T C̃)o)⊥ iff 〈#L(α), d8A〉 = 0 for anyA. So, if α belongs to the image of̃J ∗

we have thatα = ακθκ and, since #L(θκ) = −Wκχ∂/∂vχ , we deduce thatα ∈ ((T C̃)o)⊥
iff

ακ
∂8A

∂vχ
Wκχ = 0 for anyA. (8)

Therefore, the compatibility condition

J̃ ∗((T C̃)o) ∩ ((T C̃)o)⊥ = 0

is locally equivalent to the condition that the following matrix is non-singular:(
Wκχ ∂8

A

∂vκ

∂8B

∂vχ

)
. (9)

Let [̃L : T J 1π ×J 1π T
∗J 1π −→ T ∗J 1π ×J 1π T

∗J 1π be the diffeomorphism defined by

[̃L(X, α) = ([L(X), α). (10)

Let us consider the set

D = [̃−1
L (η(J

1π)+ (F1⊕ F2), F1 ∩ ((T C̃)o)⊥) ⊆ T J 1π ×J 1π T
∗J 1π. (11)

Starting with coordinates(t, qκ, vκ) on J 1π , consider the induced coordinates inT J 1π and
T ∗J 1π as in section 3.

If (X, α) ∈ T J 1π ×J 1π T
∗J 1π , we can locally write

X = (t, qκ, vκ; ṫ , q̇κ , v̇κ ) α = (t, qκ, vκ; at , aκ, bκ).
The elements ofF2 are locally written asfκθκ . Thus, using (4), (10) and (11), we deduce
that (X, α) ∈ D is equivalent to the following

ṫ = 1 vκ = q̇k d

dt

(
∂L

∂vκ

)
= ∂L

∂qκ
+ λA ∂8

A

∂vκ
+ fκ if (t, qκ, vκ) ∈ Int C̃

ṫ = 1 vκ = q̇k d

dt

(
∂L

∂vκ

)
= ∂L

∂qκ
+ λA ∂8

A

∂vκ
+ µ̃ ∂9

∂vκ
+ fκ + ν̃a(f̄a)κ

if (t, qκ, vκ) ∈ ∂C̃
and

(t, qκ, vκ; at , aκ, bκ) = (t, qκ, q̇κ;−q̇κaκ , aκ, 0) ∈ F1 ∩ ((T C̃)o)⊥.
We conclude that(X, α) ∈ D is written as

ṫ = 1 vκ = q̇κ d

dt

(
∂L

∂vκ

)
= ∂L

∂qκ
+ λA ∂8

A

∂vκ
+ µ ∂9

∂vκ
+ fκ + νa(f̄a)κ

and

(t, qκ, vκ;−vκaκ, aκ, 0) ∈ F1 ∩ ((T C̃)o)⊥
where we letµ = µ̃, νa = ν̃a on ∂C̃ andµ = 0, νa = 0 on IntC̃ to unify notation.
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Next, we will analyse the conditionα = (t, qκ, q̇κ;−q̇κaκ , aκ, 0) ∈ F1∩ ((T C̃)o)⊥. We
will denoteaκ by 1pκ , from now on. From (8), we deduce thatα = (1pκ)θκ ∈ ((T C̃)o)⊥
if and only if

1pκ
∂8A

∂vχ
Wκχ = 0 for anyA. (12)

But α ∈ F1 means

α = (1pκ)θκ = λ̄AJ̃ ∗(d8A)+ µ̄J̃ ∗(d9)+ ν̄af̄a =
(
λ̄A
∂8A

∂vκ
+ µ̄ ∂9

∂vκ
+ ν̄a(f̄a)κ

)
θκ

with µ̄ = ν̄a = 0 on IntC̃. Hence

1pκ = λ̄A ∂8
A

∂vκ
+ µ̄ ∂9

∂vκ
+ ν̄a(f̄a)κ .

Replacing in the conditions (12) to take into account thatα belongs to the intersection, we
get

λ̄A
∂8A

∂vκ

∂8B

∂vχ
Wκχ + µ̄ ∂9

∂vκ

∂8B

∂vχ
Wκχ + ν̄a(f̄a)κ ∂8

B

∂vχ
Wκχ = 0. (13)

This means that ifµ̄ and ν̄a are given, we can computēλA. In particular, if µ̄ = 0 and
ν̄a = 0 we haveλ̄A = 0 for anyA (which is the case in Int̃C).

6. Motions

We will describe the motions for a regular time-dependent Lagrangian system subjected to
one-sided non-holonomic constraints as defined in the last section. We will use the notation
of section 4.

A motion is a curve inJ 1π∗ ×E T ∗J 1π , i.e. a pair of curves(σ, ϕ) whereσ is a curve
in J 1π∗ and ϕ is a curve inT ∗J 1π such thatπ∗1,0 ◦ σ = π1,0 ◦ πJ 1π ◦ ϕ = γ , with γ a
section ofπ : E −→ R. We assume that the sectionγ is continuous and differentiable
from above. The curvesσ andϕ are not continuous in general, but possess lateral limits
and are differentiable from above. Thejumping curve1σ is defined as follows

1σ(t) = σ̄ (t+)− ϕ(t+)
whereσ̄ is the curve onT ∗J 1π given by

σ̄ = T ∗(π1,0) ◦ Leg◦ leg−1 ◦ σ
and

T ∗(π1,0) : T ∗γ (t)E −→ T ∗π
J1π (ϕ(t))

(J 1π)

is the pull-back ofπ1,0.

The equation of motion is the condition that the image of the curve(

˙︷ ︸︸ ︷
σ ◦ leg−1,1σ) is

contained inD. Thus, if we write

σ(t) = (t, qκ(t), pκ(t))
σ̇ (t) = (t, qκ(t), pκ(t); 1, q̇κ (t), ṗκ (t))
1σ(t) = (t, qκ(t), vκ(t);−vκ1pκ,1pκ, 0)
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the condition above is equivalent to the following equations

vκ = q̇κ pκ = ∂L

∂vκ

d

dt

(
∂L

∂vκ

)
= ∂L

∂qκ
+ λA ∂8

A

∂vκ
+ µ ∂9

∂vκ
+ fκ + νa(f̄a)κ

1pκ = λ̄A ∂8
A

∂vκ
+ µ̄ ∂9

∂vκ
+ ν̄a(f̄a)κ

the Lagrange multipliersλA,µ, λ̄A, µ̄ satisfying the conditions stated in section 5. From
these local equations it is clear thatσ is a curve of momenta, and1σ is a curve which at
each point gives the jump in momenta produced by the impulsive forces.

7. Projection from the constraints

Using the admissibility and compatibility conditions, we have a decomposition

T ∗(J 1π)|C̃ = J̃ ∗((T C̃)o)⊕ ((T C̃)o)⊥.
So, we can define two complementary projectors

P̄ : T ∗(J 1π)|C̃ −→ ((T C̃)o)⊥ Q̄ : T ∗(J 1π)|C̃ −→ J̃ ∗((T C̃)o).

Since(1pκ)θκ ∈ ((T C̃)o)⊥ we deduce that̄P((1pκ)θκ) = (1pκ)θκ , so that

(1pκ)θ
κ = µ̄P̄

(
∂9

∂vκ
θκ
)
+ ν̄aP̄ ((f̄a)κθκ).

This means that in order to compute the momenta jump we only need to know the Lagrange
multipliers µ̄ and ν̄a. In some cases, this task can be accomplished in a very geometrical
way.

In fact, assume that the impulsive constraints remain after the impulse. More precisely,
the 1-formsf̄a are just given by some impulsive constraints9a which remain along the
boundary ofC̃. The reader can imagine, for instance, the motion of a rolling ball on the
plane which hits a wall and then it continues the motion rolling also on the wall.

We include, for simplicity, the impulsive constraint9 in the set{9a}. Our assumption
is that the constraints9a are affine, say9a = 9a

κ (t, q)v
κ + ϕa(t, q).

In addition, we assume that the LagrangianL is of mechanical type. Let us explain the
meaning of this terminology.

Let g be a metric in the vertical vector bundleVπ of π : E −→ R, and let0 be a
Ehresmann connection inπ . As we know,0 induces a global sections : E −→ J 1π of
π1,0 locally expressed bys(t, qκ) = (t, qκ, sκ(t, q)). We defineL : J 1π −→ R by

L(j1
t φ) = 1

2gφ(t)(vert(φ̇(t)), vert(φ̇(t)))− V ◦ π1,0

where vert(φ̇(t)) denotes the vertical part oḟφ(t) with respect to0, andV : E −→ R is a
potential function. In local coordinates we have

L(t, qκ, vκ) = 1
2gκχv

κvχ − gκχvκsχ + 1
2gκχs

κsχ − V (t, qκ) (14)

wheregκχ (t, q) = g(∂/∂qκ, ∂/∂qχ).
Remark 7.1. If E is the trivial bundleR×Q, g comes from a Riemannian metric onQ
and0 is the trivial connection (say,sκ = 0), we obtain

L(t, qκ, vκ) = 1
2gκχ (q)v

κvχ − V (t, qκ).
If not, one has to assume the existence of an Ehresmann connection in order to have a
decomposition of the tangent vectors toE in their horizontal (‘∂/∂t-part’) and vertical
parts.
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The Legendre transformation corresponding to the LagrangianL given by (14) is

leg(t, qκ, vκ) = (t, qκ, gκχvχ − gκχsχ ).
We assume that the non-holonomic constraints8A are affine, say8A = 8A

κ (t, q)v
κ +

ϕA(t, q). Then we getJ̃ ∗(d8A) = 8A
κ θ

κ . Thus, we have

Q̄(α) = −C̃AB [#L(α)(8
B)]J̃ ∗(d8A) P̄ (α) = α − Q̄(α)

for any 1-formα, where(C̃AB) is the inverse matrix of(C̃AB = gκχ8A
κ 8

B
χ ). Then, we

obtain

P̄ (J̃ ∗(d9a)) = (9a
κ − C̃AB8A

κ 8
B
µ9

a
χg

χµ)θκ .

For brevity we introduce the notationβaκ = 9a
κ − C̃AB8A

κ 8
B
µ9

a
χg

χµ.

We will assume that the 1-forms{J̃ ∗(d8A), J̃ ∗(d9a)} are independent along∂C̃. Then,
the 1-forms{P̄ (J̃ ∗(d9a)) = βaκ θκ} are also independent along∂C̃.

Denote by(vκ)0 and (vκ)1 (respectively,(pκ)0 and (pκ)1) the velocities (respectively,
momenta) before and after the impulse. Since the impulsive constraints remain we have

9a
κ (v

κ)1+ ϕa = 0 for all a

and, moreover,

8A
κ (v

κ)1+ ϕA = 0 for all A.

Therefore, we get

βaκ (v
κ)1+ β̄a = 0 for all a (15)

whereβ̄a = ϕa − C̃ABϕA8B
κ 9

a
χg

κχ . By the Legendre transformation, (15) becomes

βaκ g
κχ (pχ)1+ βa ◦ s = 0 for all a (16)

whereβa = βaκ vκ + β̄a.
Since1pκ = (pκ)1− (pκ)0 =

∑
a ν̄

aβaκ , from (16) we deduce that

(pκ)1 = (pκ)0− C̃ ′abβaκ βbχgµχ(pµ)0− (βb ◦ s)C̃ ′abβaκ (17)

where(C̃ ′ab) is the inverse matrix of the regular matrix(C̃ ′ab = βaκ βbχgκχ ).
Equation (17) gives the momentum after the impulse in terms of the momentum before

the impulse. We will obtain it by defining a convenient projector.
Let F̃1 be the vector bundle defined by

(F̃1)x = span{P̄ (J̃ ∗(d9a)(x))} for all x ∈ ∂C̃.
Our purpose now is to define a complementary vector bundle ofF̃1 along∂C̃ such that the
associated projectors give the jump of momenta.

For eachx ∈ ∂C̃, we define

S̃x = {γ ∈ T ∗x (J 1π) | dβa(x)(#L(γ )) = 0, for all a}.
(We remark that̃Sx = [L(〈dβa(x)〉o)).

Lemma 7.2. We have

T ∗x (J
1π) = (F̃1)x ⊕ S̃x

for any x ∈ ∂C̃.



2666 A Ibort et al

Proof. Since{βaκ θκ} are independent, then{dβa} also are independent. So, the dimensions
of (F̃1)x andS̃x are complementary. Now, assume thatγ = Ucβc

κθ
κ ∈ (F̃1)x∩S̃x . Therefore,

0= (Ucβc
κ#L(θ

κ))(βa) = −Ucβc
κg

κχβaχ

for all a, which impliesUc = 0, for all c. Thus, we get(F̃1)x ∩ S̃x = {0}. �

Consider the two complementary projectors

P̃ : T ∗(J 1π)|∂C̃ −→ S̃ Q̃ : T ∗(J 1π)|∂C̃ −→ F̃1

along the boundary of̃C. A direct computation shows that

Q̃(γ ) = −C̃ ′ab dβa(#L(γ ))β
b
κ θ

κ

so that we obtain

P̃ ((pκ)1θ
κ) = ((pκ)1− C̃ ′abβaκ βbχgµχ(pµ)1)θκ .

We define an affine mapping̃P ′ : T ∗(J 1π)|∂C̃ −→ T ∗(J 1π)|∂C̃ by putting

P̃ ′(0x) = −(C̃ ′ab(βb ◦ s)βaκ )θκx for all x ∈ ∂C̃
and with associated linear mapping̃P . Therefore, we have

P̃ ′((pκ)0θκ) = −(C̃ ′ab(βb ◦ s)βaκ )θκ + P̃ ((pκ)0θκ). (18)

However,

P̃ ((pκ)0θ
κ) = P̃

(
(pκ)1θ

κ −
∑
a

ν̄aβaκ θ
κ

)
= P̃ ((pκ)1θκ).

Thus, we have

P̃ ′((pκ)0θκ) = −(C̃ ′ab(βb ◦ s)βaκ )θκ + P̃ ((pκ)1θκ)
= −(C̃ ′ab(βb ◦ s)βaκ )θκ + (pκ)1θκ − C̃ ′abβaκ βbχgµχ(pµ)1θκ .

Therefore, from (16), we deduce that

P̃ ′((pκ)0θκ) = (pκ)1θκ − C̃ ′abβaκ ((βb ◦ s)+ βbχgχµ(pµ)1)θκ
= (pκ)1θκ .

It should be noticed that the linear part ofP̃ ′ is a projector operator.
Even if the impulsive constraints do not remain, it is still possible, in some cases, to

construct similar kinds of operators which give the new initial data in terms of the old ones
(see, for instance, examples 10.1 and 10.3, later).

8. Holonomic one-sided constraints

In this section, we modify the constructions of section 5 for holonomic one-sided constraints.
This is not a particular case of the non-holonomic situation.

Let C be a submanifold ofE with boundary, that is,C is locally defined by equations
of the formφA(t, q) = 0, ψ(t, q) > 0. FromC we define the submanifold̃C of J 1π with
boundary by the equations

8̄A = (φA ◦ π1,0) = 0 8A = (φA)c|J 1π
= 0 9 = (ψ ◦ π1,0) > 0

wheref c = dT f denotes the complete lift toT E of a functionf on E. These equations
mean thatC̃ is locally defined as follows
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8̄A(t, qκ, vκ) = φA(t, qκ) = 0

8A(t, qκ, vκ) = vκ ∂φ
A

∂qκ
+ ∂φ

A

∂t
= 0

9(t, qκ, vκ) = ψ(t, qκ) > 0.

In fact, the submanifold̃C can be defined by

C̃ = {j1
t φ ∈ J 1π | φ(t) ∈ C, dφA(φ(t))(φ̇(t)) = 0 for anyA}.

In this case, the Chetaev bundle becomes

(F1)x =
{

span{(J̃ ∗ d8A)(x)} if x ∈ Int C̃

span{(J̃ ∗ d8A)(x), (dψ)(x), f̄a(x)} if x ∈ ∂C̃
wheredψ is the 1-form given by

dψ = J̃ ∗(dψc
|J 1π

) = ∂ψ

∂qκ
θκ .

Remark 8.1. In order to obtain a projector operator from the impulsive constraints which
remain after the impulse, the procedure is similar as in the above case. We only need to
consider the permanent constraintψc

|J 1π
= (∂ψ/∂qκ)vκ+(∂ψ/∂t) = 0, apart from the other

possible permanent impulsive constraints9a(t, qκ, vκ) = 0.

9. Mixed constraints

An interesting situation occurs when we have mixed constraints, that is, the functions8A

are ordinary non-holonomic constraints but we have, in addition, a holonomic one-sided
constraintψ(t, q) > 0. We can again define a submanifold with boundaryC̃ of J 1π given
by the following equations

8A = 0 9 = (ψ ◦ π1,0) > 0

which is locally written as follows

8A(t, qκ, vκ) = 0 (19)

9(t, qκ, vκ) = ψ(t, qκ) > 0 (20)

and the Chetaev bundle is given by

(F1)x =
{

span{(J̃ ∗ d8A)(x)} if x ∈ Int C̃

span{(J̃ ∗ d8A)(x), (dψ)(x), f̄a(x)} if x ∈ ∂C̃.

Remark 9.1. In order to obtain a projector operator from the permanent impulsive
constraints, we proceed as in remark 8.1.

10. Examples

Example 10.1. Consider the case of collision of a free particle in the planex, y against
the moving wall determined byx2 + y2 6 f (t) wheref (t) > 0 for all t ∈ R. We assume
that the particle has massm = 1 and that the trajectory of any individual particle of the
wall is contained in a line through the origin of coordinates.
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The system is described by:

(i) the regular Lagrangian function

L = 1
2(ẋ

2+ ẏ2)

(ii) the one-sided constraint

ψ = x2+ y2− f (t) 6 0.

The Chetaev bundleF1 is given by

F1 =
{
{0} if x2+ y2 < f (t)

span{x(dx − ẋ dt)+ y(dy − ẏ dt)} if x2+ y2 = f (t).
The changes of momenta and velocities are given by

1px = 1ẋ = ẋ1− ẋ0 = µ̄x
1py = 1ẏ = ẏ1− ẏ0 = µ̄y

whereµ̄ = 0 if x2+ y2 < f (t).
(i) Suppose now that the impulsive constraint9 remains after the impulsive force acts.

Thus, we have

2xẋ1+ 2yẏ1− ḟ (t) = 0

and hence we obtain that

ẋ1 = ẋ0+ ḟ (t)− 2xẋ0− 2yẏ0

2f (t)
x

ẏ1 = ẏ0+ ḟ (t)− 2xẋ0− 2yẏ0

2f (t)
y.

Using the results in section 7 we can define an affine projector such that(
ẋ1

ẏ1

)
=
(
ẋ0

ẏ0

)
− 1

f (t)

(
x2 xy

xy y2

)(
ẋ0

ẏ0

)
+ ḟ (t)

2f (t)

(
x

y

)
.

(ii) Suppose that the collision of the particle with the wall is elastic. We need to know
the velocityV of a point remaining always in the wall. This velocity is equal to

V = ḟ (t)

2f (t)
(x, y).

Denote byv⊥1 andv⊥0 the normal components to the wall of the velocity after and before
the collision. Thus, we get

2V = v⊥1 + v⊥0
where we assume that the massM of the wall isM � 1. After a simple computation, we
have that

v⊥0 =
xẋ0+ yẏ0

f (t)
(x, y)

v⊥1 =
xẋ1+ yẏ1

f (t)
(x, y).

Then,

ḟ (t) = xẋ0+ yẏ0+ xẋ1+ yẏ1.
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Finally,

ẋ1 = ẋ0+ ḟ (t)− 2xẋ0− 2yẏ0

f (t)
x

ẏ1 = ẏ0+ ḟ (t)− 2xẋ0− 2yẏ0

f (t)
y.

In this case one can still define a kind of ‘projector’ which gives the new initial data in
terms of the old ones:(
ẋ1

ẏ1

)
=
(
ẋ0

ẏ0

)
− 1

f (t)

(
x2 xy

xy y2

)(
ẋ0

ẏ0

)
− 1

f (t)

(
x2 xy

xy y2

)(
ẋ0

ẏ0

)
+ ḟ (t)
f (t)

(
x

y

)
=
(
ẋ0

ẏ0

)
− 2

f (t)

(
x2 xy

xy y2

)(
ẋ0

ẏ0

)
+ ḟ (t)
f (t)

(
x

y

)
.

Example 10.2. (The bouncing particle.) Mechanical systems subjected to time-dependent
impulsive constraints are very important physical systems. We mention below two classical
examples.

(i) The Fermi model. This is a model proposed by Fermi to study the acceleration of
cosmic rays by momentum transfer from magnetic fields. The model consists of a particle
bouncing between a fixed and an oscillating wall [11]. This system is the prototype of a
two-dimensional map with a Smale horseshoe.

(ii) Bouncing particles with a vibrating wall, under the gravitational field of the Earth.
The classical version of this system is dynamically equivalent to the above Fermi model.
The quantum version consists of reflections of ceasium atoms from a vibrating atomic mirror,
under the gravitational field of the Earth. These devices produce temporal phase modulation
of de Broglie waves and open new possibilities for precision experiments in atom optics,
as for example the construction of an atomic Fabry–Pérot interferometer [3, 38].

As both examples are dynamically equivalent we will only discuss the second one. Let
us consider the repeated rebounding of a particle under a constant gravitational field with a
periodic moving wallxW(t) = A sinωt . The system is described by:

(i) the regular Lagrangian

L = 1
2v

2− gx
(ii) the time-dependent one-sided holonomic constraint

ψ = x − A sinωt > 0.

In this case, the Chetaev bundle is

F1 =
{
{0} if x − A sinωt > 0

span{dx − v dt} if x − A sinωt = 0.

Thus, if ti is the instant of time of theith impact of the particle with the moving wall then

v1(ti)− v0(ti) = p1(ti)− p0(ti) = µti
wherev1(ti) is the velocity of departure of the particle andv0(ti) is the velocity of approach.

The velocity of approachv0(ti) verifies thatv0(ti) − ẋW (ti) < 0 and the velocity of
departurev1(ti) − ẋW (ti) > 0. Also, we suppose thatv1(ti) − ẋW (ti) 6 ẋW (ti) − v0(ti).
Thus, there exists a real numberα, 06 α 6 1 (the coefficient of restitution), such that

v1(ti)− ẋW (ti) = α(ẋW (ti)− v0(ti))
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or

v1(ti) = (1+ α)Aω cos(ωti)− αv0(ti)

where we assume that the massM of the wall isM � 1.
Then, the Lagrange multiplierµti is equal to

µti = (1+ α)Aω cos(ωti)− (1+ α)v0(ti).

Now, we relate theith impact with the(i + 1)th impact. Suppose that the distance that the
ball travels between both impacts is large compared with the amplitude of the motion of
the wall. Then, the time difference between impacts is given by

ti+1− ti = 2v1(ti)

g

and the velocityv0(ti+1) = −v1(ti). Therefore, we obtain that

φ(ti+1) = φ(ti)+ 2ω v1(ti)

g

v1(ti+1) = αv1(ti)+ (1+ α)Aω cos

(
φ(ti)+ 2ω v1(ti)

g

)
whereφ(t) = ω t .

Observe that the repeated impacts are modelled by the map

f : δC̃ −→ δC̃ (t, v) 7−→
(
t + 2v

g
, αv + (1+ α)Aω cos

(
ωt + 2ω v

g

))
.

Example 10.3. (A sphere of radiusr and mass1 rolls without slidding on a horizontal
plane.) At the instantt , the sphere hits a moving smooth wall (see [30]). The system is
described by:

(i) the regular Lagrangian function

L = 1
2(ẋ

2+ ẏ2+ ż2+ k2(θ̇2+ ϕ̇2+ ψ̇2+ 2ϕ̇ψ̇ cosθ))

(ii) the permanent constraints (the sphere rolls without slidding on the planez = 0)

φ1 = ẋ − rθ̇ sinψ + rϕ̇ sinθ cosψ = 0

φ2 = ẏ + rθ̇ cosψ + rϕ̇ sinθ sinψ = 0

φ3 = ż = 0

or, after some algebraic manipulations,

φ′1 = ẋ cosψ + ẏ sinψ + rϕ̇ sinθ = 0

φ′2 = ẋ sinψ − ẏ cosψ − rθ̇ = 0

φ′3 = ż = 0

(iii) the instantaneous constraint onx − r > f (t)
9 = ẋ − ḟ (t).

The Chetaev bundleF1 is given by

F1 =



span{cosψ (dx − ẋ dt)+ sinψ (dy − ẏ dt)

+r sinθ (dϕ − ϕ̇ dt), sinψ (dx − ẋ dt)

− cosψ (dy − ẏ dt)− r(dθ − θ̇ dt), dz− ż dt} if x > r + f (t)
span{cosψ (dx − ẋ dt)+ sinψ (dy − ẏ dt)

+r sinθ (dϕ − ϕ̇ dt), sinψ (dx − ẋ dt)

− cosψ (dy − ẏ dt)− r(dθ − θ̇ dt), dz− ż dt, dx − ẋ dt} if x = r + f (t).
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The relation between the pre-impact and post-impact momenta is obtained from the equations

1px = λ̄1 cosψ + λ̄2 sinψ + µ̄
1py = λ̄1 sinψ − λ̄2 cosψ

1pz = λ̄3

1pθ = −rλ̄2

1pϕ = rλ̄1 sinθ

1pψ = 0

whereµ̄ = 0 if x > r + f (t).
As we know, in order to compute the jump in momenta we only need to know the

Lagrange multiplier corresponding to the impulsive constraint. Therefore, we determine the
Lagrange multipliers̄λ1, λ̄2 and λ̄3 in terms of the multiplierµ̄. Hence, we have

1px = r2

k2+ r2
µ̄

1py = 0

1pz = 0

1pθ = rk2 sinψ

k2+ r2
µ̄

1pϕ = − rk
2 sinθ cosψ

k2+ r2
µ̄

1pψ = 0

or, in terms of velocities,

1ẋ = ẋ1− ẋ0 = r2

k2+ r2
µ̄

1ẏ = ẏ1− ẏ0 = 0

1ż = ż1− ż0 = 0

1θ̇ = θ̇1− θ̇0 = r sinψ

k2+ r2
µ̄

1ϕ̇ = ϕ̇1− ϕ̇0 = − r cosψ

(k2+ r2) sinθ
µ̄

1ψ̇ = ψ̇1− ψ̇0 = r cosθ cosψ

(k2+ r2) sinθ
µ̄.

In order to obtain a complete description of the post-impact velocities it is necessary to
require additional information about the system. For example, assume that the coefficient
of restitution is equal toα (06 α 6 1), then

ẋ1− ḟ (t) = −α(ẋ0− ḟ (t)).
This last condition determines the Lagrange multiplierµ̄ as a function of the pre-impact
velocity, that is,

µ̄ = (1+ α)(ḟ (t)− ẋ0)(k
2+ r2)

r2
.
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Following section 7, we can write in matricial form

(px)1

(py)1

(pz)1

(pθ )1

(pϕ)1

(pψ)1


=



(px)0

(py)0

(pz)0

(pθ )0

(pϕ)0

(pψ)0


− (1+ α)



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
k2 sinψ
r

0 0 0 0 0

− k2 sinθ cosψ
r

0 0 0 0 0

0 0 0 0 0 0





(px)0

(py)0

(pz)0

(pθ )0
(pϕ)0

(pψ)0



+(1+ α)ḟ (t)



1

0

0
k2 sinψ
r

− k2 sinθ cosψ
r

0


.
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Appendix. Cosymplectic vector spaces and manifolds

Let V be a real vector space of dimension(2m + 1), η a 1-form onV and� a 2-form
on V . Then the triple(V ,�, η) is called a cosymplectic vector space ifη ∧ �m 6= 0 (see
[2, 21, 24]).

If (V ,�, η) is a cosymplectic vector space andV ∗ is the dual space ofV then the linear
map

b : V −→ V ∗ v ∈ V −→ b(v) = iv�+ (η(v))η ∈ V ∗ (21)

is a linear isomorphism. We will denote by # the inverse homomorphism. The vector
ξ = #(η) is called the Reeb vector of the cosymplectic vector space(V ,�, η). It is
characterized by the relationsiξ η = 1 andiξ� = 0.

Let W be a subspace of(V ,�, η). We define the orthocomplement ofW in V with
respect to(�, η) as the subspaceW⊥ given by (see [21, 24])

W⊥ = {v ∈ V | (iv�− η(v)η) ∈ Wo} (22)

Wo being the annihilator subspace ofW , that is

Wo = {α ∈ V ∗ | α(w) = 0, for all w ∈ W }.
We have the following.
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Proposition A.1. If W is a subspace of a cosymplectic vector space(V ,�, η) then
dimV = dimW + dimW⊥ and (W⊥)⊥ = {v − 2η(v)ξ | v ∈ W }. Moreover, if
W ∩W⊥ = {0}, we haveV = W ⊕W⊥.

If (V ,�, η) is a cosymplectic vector space we can define a 2-vector3 : V ∗×V ∗ −→ R
as follows:

3(α, β) = �(#(α), #(β)) (23)

for (α, β) ∈ V ∗ × V ∗.
Under the natural identificationV ∼= (V ∗)∗ we have that(V ∗,3, ξ) is a cosymplectic

vector space with Reeb vector the 1-formη. Moreover, from (21) and (23), we deduce that

#(α) = −iα3+ α(ξ)ξ
for α ∈ V ∗. Thus, using (22), we obtain the following.

Proposition A.2. Let U be a subspace of the cosymplectic vector space(V ∗,3, ξ) and
denote byUo the annihilator subspace ofU , i.e.Uo = {v ∈ V | α(v) = 0, for all α ∈ U}.
Then,

U⊥ = b(Uo) = {α ∈ V ∗ | #(α) ∈ Uo}.

Now, suppose thatM is a smooth(2m + 1)-dimensional manifold. M is said to be
cosymplectic if a closed 1-formη and a closed 2-form� onM exist such that for allx ∈ M
the triple(TxM,�x, ηx) is a cosymplectic vector space, whereTxM is the tangent space to
M atx. If M is a cosymplectic manifold then, using the above results on cosymplectic vector
spaces, we can define a skew-symmetric tensor field3 of type (2, 0) onM. Furthermore,
the bracket of functions onM given by

{f, g} = 3(df, dg)

for f, g ∈ C∞(M,R), is a Poisson bracket and the symplectic leaves of this Poisson structure
are precisely the leaves of the integrable distribution kerη (see [2]). Finally, notice that if
x is a point ofM andW is a subspace ofTxM (respectively,T ∗x M) then we can define the
cosymplectic orthocomplement ofW in TxM (respectively,T ∗x M).
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[1] Aimé P 1996 Sur la dynamique des systèmes ḿecaniquesAnn. Inst. Henri Poincar´e: Phys. Theor.64 153–76
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